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Abstract
The performance of electricity utilities in many African countries is undermined by electricity theft. Such 
non-technical losses (NTLs) pose significant economic challenges to electricity grids, leading to the need 
for improved detection methods. This study tested an NTL detection method that transformed electricity 
consumption (EC) profiles into two-dimensional (2D) and one-dimensional (1D) representations, and utilised 
deep-learning techniques, specifically convolutional neural networks (CNN) and multi-layer perceptron 
(MLP), to extract features indicating NTLs. This NTL detection method involved three parallel branches: 
analysing temporal information from application of a Markov transition field (MTF) to EC patterns; analysing 
spectral information from application of the continuous wavelet transform (CWT) tool; and extracting 
frequent co-occurrence features from 1D consumption patterns. CNN and MLP were employed within the 
three branches to capture information from the 2D and 1D inputs, respectively. The features extracted from 
the three branches were then aggregated through information fusion and applied to EC datasets produced 
by the State Grid Corporation of China (SGCC) and the Irish Commission for Energy Regulation (CER). 
This multi-branch approach was found to offer strong NTL detection accuracy. With the SGCC dataset, the 
method achieved an AUC (area under the curve) of 96.7%, a mAP@100 (mean average precision at 100) 
of 95.7%, and an FPR (false positive rate) of 8.1%. With the CER dataset, the method achieved an AUC of 
96.7%, a mAP@100 of 97.3%, and an FPR of 5.2%. 

Keywords
electricity consumption (EC), electricity theft, non-technical losses (NTLs), information fusion, deep-
learning, convolutional neural networks (CNN), multi-layer perceptron (MLP), Markov transition field (MTF), 
continuous wavelet transform (CWT)  

DOI: https://doi.org/10.23962/ajic.i35.20652

Recommended citation
Chuwa, M.G., Ngondya, D., & Mwifunyi, R, (2025). Use of information-fusion deep-learning techniques to 
detect possible electricity theft: A proposed method. The African Journal of Information and Communication 
(AJIC), 35, 1-16. https://doi.org/10.23962/ajic.i35.20652

 

This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence:  
https://creativecommons.org/licenses/by/4.0



The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 2

Use of information-fusion deep-learning techniques to detect possible electricity theft: A proposed method

1. Introduction
In many African countries, the performance and financing of the electricity grid are undermined by high 
rates of  theft. In South Africa, it is estimated that 32% of transmitted electricity is stolen, while in Nigeria, 
electricity theft is thought to range between 32% to 34% of national transmissions annually (Adongo et 
al., 2021). Other parts of the world also suffer from high levels of electricity theft. For example, in China, an 
estimated 16% of generated electricity is stolen, while India and Brazil lose around 25% and 15% of their 
annual production, respectively (J. Chen et al., 2023). Yan and Wen (2022) point out that electricity theft 
is one of the main causes of financial difficulties faced by electricity utilities in both the developing and 
developed world. In addition to the financial impact, electricity theft also leads to risks to public safety, 
power surges, network damage, and degraded reliability. It is, thus, critical that electricity utilities detect 
non-technical losses (NTLs) as accurately as possible, so as to be alerted to possible electricity theft (Y. 
Chen et al., 2023).

In recent years, detection and prevention of electricity theft have received growing attention from researchers 
and industry practitioners. Conventional machine-learning methods, which rely on feature engineering, 
have been widely explored and reported to achieve acceptable results in identifying instances of electricity 
theft (Guarda et al., 2023). These machine-learning-based approaches typically involve extracting a variety 
of features, such as statistical metrics (e.g., maximum, minimum, mean, and standard deviation), frequency 
domain characteristics, electricity measurement data (e.g., phase imbalance, power factor), and static 
information related to geographic location, economic activity, and weather conditions (Chuwa & Wang, 
2021). These features are classified using conventional machine-learning algorithms, including support 
vector machines (SVMs), k-nearest neighbours (KNNs), decision trees, and gradient-boosting methods. 
For example, Fang et al. (2023) proposed a light gradient-boosting method with 56 statistical features for 
detection of electricity theft. Zidi et al. (2023) incorporated 10 different electricity features and categorical 
features to detect theft using five machine-learning techniques: SVMs, KNNs, decision trees, random forest, 
bagging ensemble, and artificial neural networks (ANNs). 

While conventional machine-learning-based methods have demonstrated promising performance in 
electricity theft detection, they have certain limitations. They primarily depend on human expertise and 
intervention for crucial feature-extraction and feature-engineering tasks. Handcrafted feature-engineering 
can lead to important information being missed, thus potentially reducing the effectiveness of conventional 
machine-learning techniques in accurately detecting electricity theft.

Deep-learning approaches to detecting electrical NTLs
Recently, to address the limitations of conventional machine-learning approaches, researchers have turned 
to deep-learning methods, which have the ability to extract relevant features automatically. Shi et al. (2023) 
proposed an approach that uses a transformer neural network (TNN) with a conv-attentional module to 
extract global and local features. Bai et al. (2023) proposed a hybrid convolutional neural network (CNN)-
transformer model to detect electrical NTLs. Their work used a CNN with dual scale and dual branch 
architecture to extract multi-scale features in a local-to-global fashion. In addition, a transformer model 
with Gaussian weighting was used to capture the temporal dependence of electricity consumption (EC). In 
a study by Javaid et al. (2021), CNN, long short-term memory (LSTM), and a deep Siamese network were 
used to detect electricity theft in smart grids. The study used a CNN model and LSTM to extract features 
from weekly data and learning sequences from daily data, respectively. At the same time, a deep Siamese 
network was used to identify similarities between inputs by comparing feature vectors. 
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All of the aforementioned deep-learning studies extracted features from a 1D representation of the EC 
patterns. However, it has been found that feature extraction using CNN has a better outcome for 2D data 
than for 1D data (Nawaz et al., 2023). Extracting patterns directly from 1D time-series data can be difficult 
due to high variability and the lack of spatial structure (Haq et al., 2023). Encoding energy consumption data 
into 2D image-like formats enables CNN to capture local and temporal patterns more efficiently through 
shared convolutional kernels (Massaferro et al., 2022). To enhance the ability of CNN models to capture 
complex patterns in power consumption data, researchers have explored transforming 1D time-series 
signals into 2D representations. 

For example, Nawaz et al. (2023) proposed a hybrid approach combining CNN with extreme gradient 
boosting (XGBoost) for electricity theft detection. Their method involved extracting features from energy 
consumption data in 1D and 2D formats, with weekly consumption data arranged into a matrix for 2D 
representation. Integrating XGBoost with a wide-and-deep CNN architecture significantly improved 
detection accuracy for electricity theft. Similarly, studies by Liao et al. (2023) and Xia et al. (2023) have 
demonstrated strong performance in feature extraction and NTL detection using CNN-based approaches 
on 2D representations of energy consumption data. Pan et al. (2023) also transformed consumption patterns 
into 2D image data—using Gramian angular field (GAF), Markov transition field (MTF), and recurrence plot 
techniques—and combined them into a three-channel image for input into a parallel convolutional neural 
network (PCNN) model. This architecture enhanced the CNN’s capacity to extract robust features from 
high-dimensional data.

Information fusion
The above studies have demonstrated that representing the EC patterns in 2D formats has significantly 
enhanced NTL detection accuracy. However, not all characteristics can be adequately captured using 
one 2D representation alone. Accurately measuring factors such as periodic and recurrent patterns, and 
transient events, is critical to optimising CNN performance for NTL detection. According to our analysis 
of data-transformation methods in the existing literature, measuring such factors is most effective through 
information fusion, specifically by combining MTF and continuous wavelet transform (CWT) with CNN. In 
addition, our literature analysis found that  raw 1D data representations yielded favourable results when 
processed using a multi-layer perceptron (MLP) model.

Accordingly, this study tested an information-fusion deep-learning method that extracted features from 
diverse EC pattern representations (CWT, MTF, and raw data) and fused the obtained features within a 
classifier for better detection performance. This proposed method was then evaluated using datasets 
produced by the State Grid Corporation of China (SGCC) and the Irish Commission for Energy Regulation 
(CER). We found that compared to other existing models, our method achieved superior performance. The 
main innovations in our proposed method are as follows:

•	 The method has three input branches: 2D inputs corresponding to CWT and MTF, and a 1D input 
for the raw EC series. This multi-modal representation captures the temporal, spectral, and periodic 
information of the adjacent EC pattern segments.

•	 Not relying on handcrafted features, the method utilises a combination of CNN and MLP deep-
learning models to extract information from three input representations of EC. All the features from 
these three branches were then collated via information fusion using a simple feature concatenation 
scheme to support final NTL detection. 
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Framework for the proposed method 
The framework for the proposed method consists of the following steps: (1) data pre-processing and 
transformation; (2) feature extraction and representation from the transformed data samples; (3) feature 
extraction from different input representations; and (4) fusion of features, by concatenation of features from 
different modalities, into a single vector for NTL detection. The framework is shown in Figure 1.

Figure 1: Framework

The remainder of this article is organised as follows: Section 2 describes the study’s data pre-processing 
and transformation activities; section 3 sets out the processes for feature extraction and fusion; section 4 
presents the findings from evaluation of our proposed method; and section 5 provides conclusions.

2. Data pre-processing and transformation
Data pre-processing and transformation were fundamental to creating a usable data structure—a structure 
that enabled the proposed model to be trained and to generate reliable predictions. 

CER dataset
The CER dataset (CER, 2012) provided by the Irish Social Science Data Archive (ISSDA) comprises EC data 
from over 5,000 residential and commercial electricity users. The data was recorded at half-hour intervals 
between July 2009 and December 2010. All customers for this dataset were considered legitimate, with no 
illegal electricity users. From the CER data samples, we generated attack samples. The six attack scenarios 
indicated in Table 1, defined by Jokar et al. (2016), were used to create attacks. The attack samples were 
generated from only 10% of the available load profiles by randomly selecting a subset of users and their load 
profiles. Each of the six attack-generation methods was applied to the selected users’ load profiles.
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Table 1: Attacks and their definitions (from Jokar et al., 2016)

Attack Definition
1 Report a constant fraction of the energy 

consumed.

2 Report zero consumption at randomly defined 
times of the day.

3 Reduce consumption patterns by reporting 
less from time to time.

4 Report the consumption with reduced 
expected mean from time to time.

5 Report constant consumption, which is the 
mean of day consumption.

6 Reverse the order of measured values.

SGCC dataset
The SGCC dataset from China contains the daily recorded EC data of 42,372 electricity customers from 
January 2014 to October 2016 (SGCC, n.d.). The dataset is labelled and includes 3,615 real-world NTL 
scenarios.

Handling missing values
The pre-processing of real-world datasets often requires addressing missing or erroneous data. This study 
used the linear interpolation method described by Zheng et al. (2018) to estimate missing EC samples. This 
method is useful for time-series data as it captures the relationship between adjacent variables. Equation 1 
below presents the mathematical formula of this method, where NaN represents a missing value, and xi is 
consumption at time i.  

(1)
                                                                           

This study employed the three-sigma rule to systematically identify and rectify erroneous data samples. 
Observations were deemed to be outliers if they deviated beyond two standard deviations (±2σ) from the 
mean of the data vector. Equation 2 presents the mathematical expression for correcting the erroneous 
data samples (Khan et al., 2020). In this Equation x̅ and σx represent the mean and standard deviation, 
respectively, of the consumption vector.  

                     (2)
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Data scaling
Since EC differs among customers, a min-max scaler was used to normalise the data, ensuring the data were 
on the same scale. The scaling process improves model performance and convergence while preventing 
bias from features with larger values. The min-max scaling is mathematically represented using Equation 3, 
where xmin and xmax represent the lowest and highest values in the data, respectively.

(3)

Handling imbalance 
One of the significant challenges in machine-learning models is the imbalance of data collected from 
smart meters. Typically, there are few records for classes with NTL, which leads to difficulties in training 
robust models. For example, in the SGCC dataset, ≈9%  of the data is labelled as theft scenarios. The class 
imbalance can reduce classification accuracy and create a bias towards the majority class. It is essential 
to balance the class distributions within the dataset to address the issues associated with class imbalance 
before training an NTL-detection model. In this study, we employed the synthetic minority over-sampling 
technique (SMOTE) proposed by Chawla et al. (2002). SMOTE addresses class imbalance by generating 
new samples and effectively handling imbalance for electricity theft detection (Pereira & Saraiva, 2021).
It selects a minority sample and identifies neighbouring samples, and then creates synthetic instances 
through interpolation between these chosen samples.

Data transformation
Our model processed EC data in multiple representations in order to capture diverse patterns within the 
data. A 2D structural representation was chosen to expose hidden temporal and spectral features suitable 
for CNN analysis. The preliminary experiments indicated that MTF (temporal representation) and CWT 
(time-frequency representation) yielded superior performance in detecting NTL compared to alternative 
2D representations. Simultaneously, a raw 1D representation, which exposed frequent co-occurrence 
features of the EC data, demonstrated enhanced performance in NTL detection when analysed using MLP. 
Therefore, this study represented EC patterns using MTF, CWT and 1D raw representations in order to 
comprehensively capture the diverse characteristics of the EC data.

MTF
The Markov transition field visualisation technique transforms 1D time series data into a 2D image 
representation while preserving the information in the time domain. This transformation captures the first-
order Markov transition probabilities among defined states, enhancing the ability to detect anomalies. For 
a consumption pattern denoted as ct = {c1,c2,c3,⋯,cn},  state is identified, and each value ct is allocated to a 
corresponding state sj (j ∈[1,S]). The Markov transition matrix M is constructed by calculating the frequency 
of transitions between these states, where pij of transitioning from state si to state sj. This transition matrix, 
shown in Equation 4, highlights the relationships between data points in ct and serves as a foundation for 
detecting anomalies that indicate electricity theft (Wang & Oates, 2015). The 2D representation facilitates 
the identification of unusual patterns and fluctuations that may signal fraudulent activity. Figure 2 illustrates 
the process of transforming the time series into an MTF. 

(4)
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Figure 2: Process of transforming electricity consumption series to MTF

CWT
The continuous wavelet transform tool is a powerful approach to analysing time signals that provides a 
time–frequency representation. The ability of CWT to analyse signals with time-varying characteristics 
makes it ideal for detecting inconsistencies in EC patterns that might indicate theft. Electricity theft often 
manifests as unusual periodicities that are not reflected in the normal usage profile, and traditional time-
domain or frequency-domain analyses struggle to capture this variation effectively. However, the CWT 
is highly effective at pinpointing these variations in time and frequency, enabling accurate identification. 
Consider a consumption pattern represented by the discrete sequence,  ct = {c1,c2,c3,⋯,cn} and a wavelet 
function Ψ(t). Then, the CWT is defined as a convolution between  and wavelet  , as expressed by Equation 
5 (from Boashash, 2009).

(5)

       

where * denotes the complex conjugate of Ψ, τ represents the translation parameter controlling the 
wavelet’s position in time, and a = ω0/ω  is the scale parameter that controls the stretching of wavelets in 
time, narrowing it for large frequencies and widening it for small frequencies. 

For a wavelet to be valid, it must have zero mean and be concentrated in both the time and frequency 
domains. A commonly used wavelet for spectral analysis is the Morlet wavelet, which we used in this study. 
It is defined in Equation 6 (V. C. Chen & Ling, 2002). 

  (6)

where ω0 is central frequency. 

The choice of  ω0 influences the time-frequency resolution of the analysis. A higher ω0 provides better 
frequency resolution at the expense of time resolution. Figure 3 shows analysis of EC patterns using CWT 
with the Morlet wavelet.
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Figure 3: Analysis of EC using CWT with the Morlet wavelet

3. Feature extraction and fusion
We used a deep neural network architecture (CNN and MLP) that allowed the model to learn from different 
types of data representations of the EC data: temporal (2D), spectral (2D), and raw data (1D), as presented 
in Figure 4. 

Figure 4: Architecture of the joint feature extraction and classification model

The deep CNN feature-extraction component was constructed by two blocks of convolutional layers and 
two max-pooling layers. The convolutional layers learned to detect patterns and extract meaningful features 
from the 2D inputs. The convolution layer extracted features from the input by sliding multiple kernels 
(filters) over the input, generating feature maps that captured important spatial information. 
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The output of the convolutional operation can be expressed mathematically, as shown in Equation 7, where  
fReLu is the rectified linear unit (ReLU) activation function presented by Equation 8.

          (7)

  (8)

       

After applying convolution and activation functions, the pooling process was applied to the feature maps. 
The pooling layers helped to reduce the dimensionality of the feature maps. We used the max-pooling 
operation, which takes the maximum value within a window in a feature map and is expressed by Equation 
9. 

Where yi
p  is the maximum value of  in a window of size (m,n),

           (9)

 
In the CNN feature-extraction component, convolutional and pooling operations worked alternately to 
capture the features from the two 2D representations of the EC patterns. Equations 10 and 11 express the 
overall process of feature extraction using convolution and pooling operations. 

(10)

(11)

     

Further, the raw 1D input representation was passed through a dense network, as expressed in Equation 
12. The dense network identified other information within the raw input that complemented the features 
extracted from the CWT and MTF inputs.

        (12)

After the feature extraction stage, the feature maps from the CNN of CWT and MTF inputs, and the dense 
representation for the raw input, were concatenated into a single feature vector, as expressed in Equation 
13. 

       (13)

This feature-fusion step integrated the information from the different input representations, enabling 
the model to take advantage of various aspects of the data. The fused-feature vector was then passed 
through additional dense layers to further capture and learn the interactions between the combined feature 
representations.
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4. Findings from evaluation of the proposed method
Training and validation
The multi-modal deep-learning architecture took three different types of inputs: a raw signal input, a 32x32 
single-channel image input, and another 32x32 single-channel image input. The signal input was passed 
through a dense layer with 64 ReLUs (rectified linear units), while each image input went through a series 
of 2D convolutional and max-pooling layers to extract spatial features. The convolutional layers had 32 and 
64 filters with 3x3 and 5x5 kernel sizes and ReLU activations. The max-pooling layers reduced the spatial 
dimensions of the feature maps. 

Following the feature extraction for each modality, the outputs were concatenated into a single-feature 
vector. A dropout layer with a rate of 0.2 was then applied to the combined features to improve generalisation. 
The fused features vector was then passed through a dense layer of 128 units with ReLU activations. The 
final output layer utilised a softmax activation function to generate probability estimates for the two classes. 
The model parameters of all layers were then initialised randomly and trained by a back-propagation 
algorithm with ADAM (adaptive moment estimation). The ADAM minimises the loss function and updates 
the parameters during training to achieve effective model convergence. 

Figure 5 provides the training loss and validation loss curves for the two datasets: SGCC and CER. Both 
datasets showed a general downward trend in training loss, indicating successful learning. However, the 
validation loss curves differed. The SGCC dataset exhibited less overfitting with a smaller gap between 
training and validation loss, suggesting better generalisation. Meanwhile, the CER dataset showed a more 
erratic validation loss curve, indicating potential difficulties in generalisation.

Figure 5: Training and validation loss curves for SGCC and CER datasets

Evaluation metrics
To enable a comprehensive performance evaluation, the study deployed widely used performance evaluation 
metrics, specifically area under the curve (AUC), mean average precision at M (MAP@M), and false positive 
rate (FPR). AUC measured the effectiveness of the method in distinguishing positive and negative instances. 
A high AUC would indicate the method’s ability to effectively differentiate between classes and correctly 
identify the NTL cases. The MAP@M was used to assess the quality of the proposed method by evaluating 
its ability to identify NTLs among the top M electricity consumers. The formula for calculating MAP@M is 
illustrated in Equation 14, where Pi represents the precision of correctly identified NTL at a position , and  
denotes the total number of NTL samples among M labels.        

(14)
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FPR represents the proportion of normal customers that the method incorrectly classified as abnormal, as 
defined in Equation 15, where FP and TN are the number of false positives and true negatives, respectively. 
A low FPR indicates good detection performance.

            (15)

Evaluation results
Figure 6 provides the results from the experimental evaluation of the proposed method on the SGCC and 
CER datasets. Four metrics, AUC, MAP@50, MAP@100, and FPR were used to assess the proposed model. 
As seen in the Figure 6, the method achieved impressive results for the CER dataset, with a MAP@50 of 
97.1%, a MAP@100 of 97.3%, an AUC of 96.7%, and an FPR of 5.2%. These values indicate a strong ability to 
identify NTLs accurately. The testing of the method with the SGCC dataset yielded slightly weaker (but still 
strong) metrics, with a MAP@50 of 95.82%, a MAP@100 of 95.65%, an AUC of 96.7%, and an FPR of 8.1%. 

Figure 6: The proposed method’s AUC, MAP and FPR results

The method’s achievement of high MAP and AUC values with both datasets indicated the effectiveness of 
the proposed method in detecting NTLs. In addition, the low FPR on both datasets indicated the proposed 
method’s capacity to minimise false positives. The consistent performance across both datasets highlighted 
the robustness of the proposed method. The small variations between the results for the two datasts can be 
attributed to differences in dataset characteristics.

Performance comparison between information-fusion and stand-alone representations
To further evaluate the effectiveness of the proposed method’s NTL information-fusion of features from 
different representations, we compared the performance of the proposed method with the stand-alone 
performance of each of the individual representations. The results in Tables 2 and 3 demonstrate that 
our proposed method’s integration of features from several representations significantly improves NTL 
detection performance when compared with the performance of individual representations. 

Table 2 shows the results for the CER dataset, with the results indicating an increase in AUC of approximately 
1.4% to 3% when fusing features from CWT, MTF and raw representations compared to using them 
individually. Also, FPR decreases significantly, from 0.107 with raw features to 0.052 when using fused 
features. With respect to computational efficiency, the fused model’s training time (29.41 secs) was faster 
than the training times for both MTF and CWT, but slower than than training time (18.48 secs) for the raw 
1D representation.
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Table 2: NTL-detection performance comparison on CER dataset

Metrics Raw CWT MTF Fused features
AUC 0.94 0.953 0.937 0.967

MAP@100 0.954 0.965 0.969 0.973
FPR 0.107 0.073 0.071 0.052

Time (sec) 18.48  37.81 34.67 29.41
 
Table 3 presents the results for the SGCC dataset. Again the findings reveal a substantial improvement 
in detection performance, with AUC values increasing by 7.7% to 14% when transitioning from individual 
representations to combined features, and with FPR dropping from 0.274 to 0.081. With respect to 
computational efficiency, the fused model’s training time (185.82 secs) was faster than the training times for 
CWT, but slower than training times for MTF (184.42) and for the raw 1D representation (102.51). It is worth 
noting that the fused-features approach required longer training times than the raw 1D representation 
for both datasets. However, these times remained significantly lower than those observed for CWT and 
MTF individually, suggesting that the fusion process optimised computational efficiency despite its added 
complexity.

Table 3: NTL detection performance comparison on SGCC dataset

Metrics Raw CWT MTF Fused features
AUC 0.827 0.89 0.874 0.967

MAP@100 0.87 0.894 0.888 0.957
FPR 0.274 0.218 0.253 0.081

Time (sec) 102.51 188.05 184.42 185.82

Performance comparison with existing methods
Furthermore, we compared performance of our proposed method against the performance of other 
methods applied to the SGCC and CER datasets. Zheng et al. (2018) implemented a wide and deep CNN 
using consumption patterns represented as 1D and 2D with the SGCC dataset. Also with the SGCC dataset, 
Shehzad et al. (2022) employed a SVM model that applied 11 features derived from the consumption pattern 
as the input. With EC represented as 2D matrices derived from monthly consumption data, Massaferro et 
al. (2022) utilised CNN multi-resolution with the CER dataset; Nawaz et al. (2023) deployed a CNN with 
XGBoost for the SGCC dataset; and Xia et al. (2023) used CNN with the SGCC dataset. Bastos et al. (2023)
proposed an ensemble model combining time series forest, residual network, inception time, time Le-Net, 
and multi-channel deep CNN, all trained on a 1D EC pattern. Since these studies used datasets similar to 
ours, we adopted their reported performances for initial comparison. 

As shown in Table 4, our method’s performance was significantly better than that of even the strongest 
models discussed in the literature on use of the SGCC and CER datastes, namely the Zheng et al. (2018) 
wide and deep CNN method, which achieved a MAP@100 of 0.95 with the SGCC dataset, and the Shehzad 
et al. (2022) SVM method, which achieved an AUC of 0.91 with the CER dataset. 
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Table 4: Method performance comparison (NTL detection in SGCC and CER datasets)

Method Dataset Input(s) Metrics
AUC FPR MAP@100

wide and deep CNN (Zheng et al., 2018) SGCC 1D and 2D 0.782 0.95

SVM (Shehzad et al., 2022) SGCC 11 features 0.91

CNN multi-resolution (Massaferro et al., 
2022) 

CER 2D 0.86

CNN + XGBoost 
(Nawaz et al., 2023)

SGCC 1D and 2D 0.54

CNN (Xia et al., 2023) SGCC 1D and 2D 0.836 0.951

Ensemble (TSF, ResNet, Inception time, 
time-Le-Net, MCDCNN) (Bastos et al., 

2023) 

CER 1D 0.016

Our proposed method SGCC Fused 1D and 
2D

0.967 0.081 0.957

CER Fused 1D and 
2D

0.967 0.052 0.971

Comparison with baseline classifiers using handcrafted features
To further assess the advantages of automatic feature-learning, we compared the detection performance 
of our proposed method with baseline models trained on handcrafted features. The baseline models we 
used for the comparison were k-nearest neighbour (KNN), decision tree (DT), random forest (RF), and an 
SVM model. The input features for these models consisted of five handcrafted attributes per consumption 
pattern: four statistical measures (mean, standard deviation, variance, skewness) and one frequency-domain 
feature (spectral centroid) extracted from raw EC time series. Table 5 summarises the configurations and 
key parameters selected for model training for each baseline classifier.

Table 5: Configuration of baseline classifier models

Model Key configuration
KNN Number of neighbours k = 10
DT Criterion= Gini 

RF Number of trees = 100, criterion = Gini,
SVM Kernel = RBF, C = 1.0

Common settings 5-fold cross-validation; missing values handled using KNN 
imputation (k=5)

Table 6 shows the apparent advantages of our deep-learning approach (using CNN and MLP) over the 
handcrafted feature-engineering used in baseline models. The results show that our proposed method’s 
achievement of an AUC of 0.967 on both datasets markedly surpassed the performance of KNN, decision 
tree, random forest and SVM, all of which yielded lower AUCs ranging from 0.50 to 0.84. Our proposed 
method also demonstrated a low FPR and a high MAP@100, indicating its ability to minimise erroneous 
predictions and to prioritise relevant predictions at the top of the ranked list.
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Table 6: Method performance comparison (NTL detection in SGCC and CER datasets)

Baseline 
Method

Dataset Inputs AUC FPR MAP@100

KNN SGCC Handcrafted 
features 

0.579 0.301 0.723

CER Handcrafted features 0.729 0.848 0.714

DT SGCC Handcrafted features 0.527 0.381 0.684

CER Handcrafted features 0.704 0.607 0.538

RF SGCC Handcrafted features 0.624 0.326 0.91

CER Handcrafted features 0.842 0.859 0.796

SVM SGCC Handcrafted features 0.504 0.529 0.679

CER Handcrafted features 0.769 0.859 0.796

Our proposed 
method

SGCC Fused 1D and 2D 0.967 0.081 0.957

CER Fused 1D and 2D 0.967 0.052 0.971

5. Conclusions
This study has proposed and evaluated an information-fusion approach to deep-learning NTL detection 
in electricity grids. The key innovation of the proposed method is its ability to take advantage of various 
representations of EC patterns and enhance the feature-extraction capabilities of deep-learning models. 
The proposed model has three parallel branches that simultaneously analyse: temporal information from the 
MTF representation; spectral information from the CWT representation; and frequently recurring patterns 
in the 1D representation of raw EC data. By integrating these diverse representations, the model can 
sufficiently capture temporal, spectral, and periodicity information without relying on handcrafted features. 
Moreover, the proposed method employs deep CNN to extract features from 2D representations (using 
MTF and CWT) while utilising MLP to extract features from the raw 1D representation of EC data. Through 
our experiments on real-world datasets provided by the SGCC and CER, we found the proposed model 
demonstrates better NTL performance than that found in similar studies using the the same datasets. The 
performance and efficiency of our proposed information-fusion deep-learning network suggest a promising 
response to electrical utilities’ need to to improve NTL detection and, in turn, to limit their grids’ performance 
and financial losses.
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