
The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 1

Detection of GenAI-produced and student-written C# code: A comparative study of classifier
algorithms and code stylometry features

Adewuyi Adetayo Adegbite
Postdoctoral Research Fellow, Department of Computer Science and Informatics, University of the Free State,
Bloemfontein, South Africa; and Lecturer, Adekunle Ajasin University, Akunba Akoko, Ondo State, Nigeria

 https://orcid.org/0000-0001-8195-1382

Eduan Kotzé
Associate Professor and Head of Department, Department of Computer Science and Informatics, University of the
Free State, Bloemfontein, South Africa

 https://orcid.org/0000-0002-5572-4319

Abstract
The prevalence of students using generative artificial intelligence (GenAI) to produce program code is
such that certain courses are rendered ineffective because students can avoid learning the required skills.
Meanwhile, detecting GenAI code and differentiating between GenAI-produced and human-written code
are becoming increasingly challenging. This study tested the ability of six classifier algorithms to detect
GenAI C# code and to distinguish it from C# code written by students at a South African university. A large
dataset of verified student-written code was collated from first-year students at South Africa’s University of
the Free State, and corresponding GenAI code produced by Blackbox.AI, ChatGPT and Microsoft Copilot
was generated and collated. Code metric features were extracted using modified Roslyn APIs. The data was
organised into four sets with an equal number of student-written and AI-generated code, and a machine-
learning model was deployed with the four sets using six classifiers: extreme gradient boosting (XGBoost),
k-nearest neighbors (KNN), support vector machine (SVM), AdaBoost, random forest, and soft voting (with
XGBoost, KNN and SVM as inputs). It was found that the GenAI C# code produced by Blackbox.AI, ChatGPT,
and Copilot could, with a high degree of accuracy, be identified and distinguished from student-written C#
code through use of the classifier algorithms, with XGBoost performing strongest in detecting GenAI code
and random forest performing best in identification of student-written code.

Keywords
C# code, generative AI (GenAI) code, student-written code, machine-learning, code classification, code
stylometry features

DOI: https://doi.org/10.23962/ajic.i35.21309

Recommended citation
Adegbite, A.A., & Kotzé, E. (2025). Detection of GenAI-produced and student-written C# code: A
comparative study of classifier algorithms and code stylometry features. The African Journal of Information
and Communication (AJIC), 35, 1–20. https://doi.org/10.23962/ajic.i35.21309

This article is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence:
https://creativecommons.org/licenses/by/4.0

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 2

Detection of GenAI-produced and student-written C# code

1. Introduction
Artificial intelligence (AI) has recently advanced significantly in several domains, transforming businesses,
industries, and academia with its power, especially with the advent of large language models (LLMs)
(Makridakis, 2017). Software development is one field where AI is having a strong influence (Kuhail et al.,
2024). Generative artificial intelligence (GenAI) code is rapidly progressing due to advancements in natural
language processing (NLP) and deep neural language models. GenAI code is autonomously generated
source code (such as Python, C++, or C#) based on high-level requirements, specifications, or samples
using machine-learning methods, especially deep-learning models (Odeh et al., 2024). The algorithms learn
to produce new code that satisfies predetermined standards through the use of enormous repositories of
pre-existing code, computer languages and patterns (Song et al., 2019).

The proliferation of GenAI code is fuelled by a few key technologies. LLMs, such as OpenAI’s GPT (generative
pre-trained transformer) series, have shown impressive capacities for comprehending and producing
text that resembles human-written text (Cao et al., 2023). When used in code creation, these models can
transform plain-language descriptions of desired functionality into executable code. Neural architectures
are a crucial element in the production of code that satisfies predetermined requirements, and architectures
are created specifically for code-creation activities (Dehaerne et al., 2022). The models learn to map input–
output pairings, such as code snippets and their accompanying functionality. Code semantics, syntax, and
patterns can be analysed and understood by such AI models when trained on extensive code repositories
(Wan et al., 2023). In this field, transformers (Vaswani et al., 2017), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs) are model variants that are often used.

Thus, AI models can generate code that respects coding standards and complies with best practices (White
et al., 2023) in the form of patterns, to solve common problems when using LLMs. Integrated development
environments (IDEs) and code editors with AI capabilities such as Microsoft Copilot (Nghiem et al., 2024)
offer intelligent and instantaneous code completion, recommendations and corrections (Cao et al., 2023).
Through context, user behaviour, and pre-existing code analysis, these technologies improve developer
efficiency and decrease mistakes. In codebases, AI algorithms can recognise common errors, anti-patterns,
and code smells (potentially problematic code), and automatically recommend optimisations, refactorings,
or repairs (Zhang et al., 2022).

While GenAI code is showing great promise, several issues and concerns need to be considered. Retaining
good quality, correctness, and semantic meaning in produced code is still a challenge (Krasniqi & Do, 2023).
AI models trained on biased or incomplete datasets may produce unfair or undesirable results (Varona &
Suárez, 2022). Also, in the educational setting, there is the problem of students presenting GenAI code as
their own when submitting computer-programming assignments, and this undermines the development
of efficient and effective programmers. Accordingly, for educational institutions to maintain educational
standards in their computer-programming courses, it is necessary to have tools that can assist educators
in detection of possible student submission of assignments comprising AI-generated code instead of code
written by the student. In line with this need for detection tools, the study presented in this article tested the
ability of classifier algorithms to distinguish between AI-generated C# code and C# code written by first-
year students at the University of the Free State, South Africa.

2. Literature review
A branch of software engineering called “code stylometry” examines programmers’ writing styles and habits
by analysing their source code (ShaukatTamboli & Prasad, 2013; Zafar et al., 2020). Code stylometry assigns
authorship to sections of code based on their stylistic characteristics, much like the use of text stylometry in
NLP, which examines writing styles to identify authors of texts (Benzebouchi et al., 2019; Ding et al., 2019).
Code stylometry uses a variety of linguistic and structural elements taken from source code to describe
programmers’ writing styles (Odeh et al., 2024; Tereszkowski-Kaminski et al., 2022). These code stylometry
features include lexical, structural, statistical, and syntactic features. Lexical features comprise vocabulary
choices, comments, and programming construct usage. Structural features describe the arrangement of
control structures, loops, and function definitions. Statistical features explain token distributional properties,

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 3

Detection of GenAI-produced and student-written C# code

language construct frequencies, and code metrics. Syntactic features, which are patterns in code structure,
include indentation, naming conventions, and code organisation.

Code stylometry methodologies include elements of machine-learning, statistical analysis and NLP. To
find patterns in code and determine authorship, researchers use methods including authorship attribution
models, clustering algorithms, and classification techniques (Kalgutkar et al., 2019). A wide range of
applications for code stylometry can be found in: authorship attribution; software evolution (which analyses
the evolution of code-writing styles over time to understand developer behaviour, project dynamics, and
software quality); code reuse and plagiarism detection (which compares writing styles and code patterns);
and security analysis, forensics, malware analysis, and cyber-attack attribution (Caliskan et al., 2018; Czibula
et al., 2022). Code stylometry tools are, thus useful for determining programmers’ writing styles and code
authorship (Tereszkowski-Kaminski et al., 2022). Source-code plagiarism is a critical issue in programming,
and several studies have been conducted to explore detection methods. Table 1 lists key successful studies
of code-plagiarism detection and the detection methods used.

Table 1: Studies on detection of code plagiarism (i.e., detection of plagiarised non-GenAI code)

Study Programming
language(s)

Detection method

Ebrahim and Joy (2023) Java and C++ Binary classification via pretrained models: UnixCoder, PLBART,
and CodeBERTa

Cheers et al. (2023) Java Combination of three classifiers: JPlag (structural), Graph ED
(semantic), and BPlag (behavioural)

Eliwa et al. (2023) C, C++, and Java Similarity detection strategies using JPlag embedded with LMS
Cheers et al. (2021) Java Analysis of program-execution behaviour
Lalitha et al. (2021) Java and Python Combination of three classifiers: naïve Bayes, KNN, and

AdaBoost
Srivastava et al. (2021) Java Levenshtein algorithm using edit distance between original

code and perceived plagiarised code (the difference between
the two codes, and the estimated plagiarism percentage)

Maryono et al. (2019) Pascal Euclidean distance on data for similarity measurement (by
determining term-document matrices using keywords and
programming characters, and then applying hierarchical

clustering)
Zheng et al. (2018) Python and Java Abstract syntax trees

Portillo-Dominguez et al.
(2017)

C++ Combination of three plagiarism tools (JPlag, Sherlock, and SIM)

GenAI production of programming code originated in early work on symbolic AI and automated programming.
Early efforts focused on rule-based systems, expert systems, and genetic programming techniques. Notable
progress was then achieved with the introduction of LLMs and deep-learning architectures. Today’s GenAI-
coding uses a variety of techniques and methods (Odeh et al., 2024; Raiaan et al., 2024). Natural language
descriptions of functionality can be interpreted by NLP models, such as OpenAI’s GPT series, and converted
into executable code. Symbolic AI approaches produce code by combining statistical techniques with rule-
based systems (Kotsiantis et al., 2024; Raiaan et al., 2024).

In the education context, according to Idialu et al. (2024), even without AI use, programming courses already
suffer from high levels of plagiarism and contract-cheating (a situation where students give their tasks and
assignments to an expert to solve the given problems). The use of AI tools for code generation (e.g., GitHub
Copilot, Tabnine, Gemini, ChatGPT, Blackbox.AI, Mistral, Microsoft Copilot) is now further undermining
academic integrity in such courses. The ease with which GenAI tools can generate code has produced a
new form of academic dishonesty, with students submitting GenAI code as their own work (Kazemitabaar
et al., 2024). Thus, it has now become necessary for academic instructor to find ways to detect possible AI-

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 4

Detection of GenAI-produced and student-written C# code

based plagiarism of code. Table 2 lists studies that have succeeded in detecting GenAI-produced Python,
Java and C code as produced by LLMs including ChatGPT models, GitHub Copilot and others.

Table 2: Studies on detection of GenAI code

Study Programming
language

GenAI model(s) used Detection method(s)

Corso et al. (2024) Java GitHub Copilot, Tabnine,
ChatGPT, Google Bard

CodeBLEU and Levenshtein similarity
analysis on both the generated code and

developer code
Idialu et al. (2024) Python ChatGPT-4 Machine-learning classifier: XGBoost
Pan et al. (2024) Python ChatGPT (version not

indicated)
Existing AI text detectors: GPTZero, GPT-2

Detector, DetectGPT, Sapling, and giant
language model test room (GLTR)

Bukhari et al. (2023) C Code-cushman-001,
code-davinci-001, code-

davinci-002 (OpenAI code
model variants)

Machine-learning classifiers: random
forest, SVM, KNN, XGBoost

The study set out in this article focused on detection of GenAI C# code, and on distinguishing between
GenAI and student-written C# code, because, to our knowledge, no such studies had previously been
carried out in the South African educational context.

3. Study design
The GenAI C# code used in the study was produced by the Blackbox.AI, ChatGPT, and Microsoft Copilot
LLMs, and the student-written code was produced by university students. Table 3 lists the versions used for
each of the GenAI models.

Table 3: GenAI models used

Model Version Data freshness
Blackbox.AI Blackbox.AI 1.0 Up to September 2024

ChatGPT-4o-mini Gpt-4o-
mini-2024-09-31

Up to October 2023

Microsoft Copilot Copilot 1.1 Up to February 2023

The study tested the ability of six classifiers—extreme gradient boosting (XGBoost), k-nearest neighbors
(KNN), support vector machine (SVM), AdaBoost, random forest, and soft voting (with XGBoost, KNN and
SVM as inputs)—to distinguish between GenAI C# code and student-written C# code. These six classifiers
were selected based on their successful application in existing studies of code stylometry.

XGBoost constructs decision trees iteratively optimising an objective function to strike a balance between
prediction accuracy and model simplicity (Bukhari et al., 2023; Idialu et al., 2024). KNN is an instance-
based learning algorithm that classifies data points based on the majority class of their nearest neighbours,
identifying the k closest points in the feature space to a new example and assigning the most common
class label among them. This method relies on the assumption that similar data points exist in proximity
(Bukhari et al., 2024). SVM constructs a hyperplane, or set of hyperplanes, in a high-dimensional space to
separate different classes, optimising the distance between the hyperplane and the nearest points of each
class, called support vectors. By maximising this margin, SVM ensures robust classification focusing on
generalisation to unseen data (Bukhari et al., 2024).

AdaBoost combines multiple weak classifiers, typically decision trees, to form a strong classifier focusing
on misclassified examples by adjusting their weights, thereby forcing subsequent classifiers to pay more
attention to complex cases. Each classifier contributes to the final prediction with a weight proportional to its
accuracy. Random forest builds an ensemble of decision trees by training multiple trees on random subsets

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 5

Detection of GenAI-produced and student-written C# code

of the training data and features. This ensemble approach reduces the risk of overfitting and enhances the
model’s generalisation capabilities (Bukhari et al., 2024). Soft voting is an ensemble method that combines
predictions from three base models, namely XGBoost, KNN, and SVM, to improve overall performance.
Prediction is based on the average probabilities assigned by the models (Lalitha et al., 2021). All classifiers
were trained using their default hyperparameters without additional tuning. The study also used SHAP
(SHapley Additive exPlanations) to help explain the performance of the classifiers (Lundberg & Lee, 2017).

Ethical clearance
Ethical clearance for this study was granted by the General/Human Research Ethics Committee of the
University of the Free State, South Africa, and the ethical clearance number is UFS-HSD2024/0601.

Data collection
During data collection, C# code files (*.cs) were extracted from Visual Studio C# solution files submitted in
response to nine problems by 314 first-year Computer Science students at the Bloemfontein campus of the
University of the Free State. The solution files, a sample of which is shown in Figure 1(a), were written in a
controlled environment under the supervision of lecturers and student assistants, thus ensuring that the
code produced was purely student-written. The same nine problems were presented (by a separate group
of 219 students) to Blackbox.AI, ChatGPT, and Microsoft Copilot to solve, and this allowed for the collection
of GenAI-generated C# code data, a sample of which is shown in Figure 1(b).

Figure 1: Sample C# code (for Problem 2)

(a) Student-written code (b) AI-generated code

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 6

Detection of GenAI-produced and student-written C# code

The nine problems were labelled Problem 1 through 9 (Appendix C), with the ordering in ascending order
of difficulty, i.e., Problem 9 was the most difficult. In the student-written C# code dataset, there were 1,043
solutions across the nine problems (Table 4). In the GenAI C# code dataset (Table 5), there were 1,120 GenAI
C# categorised code solutions across the nine problems, and 195 uncategorised code solutions in total.
(The uncategorised code solutions were those for which the GenAI model could not be clearly identified.)

Table 4: Student-written C# code

Problem no. No. of student C#
code solutions

Problem 1 108
Problem 2 105
Problem 3 113
Problem 4 202
Problem 5 104
Problem 6 102
Problem 7 104
Problem 8 105
Problem 9 100

Total 1,043

Table 5: GenAI C# code

Problem no. No. of
Blackbox.AI

C# code
solutions

No. of
ChatGPT
 C# code
solutions

No. of
Copilot

C# code
solutions

Total
categorised

GenAI C# code
solutions

Total
uncategorised

GenAI C#
code solutions

Grand totals
of C# code
solutions

Problem 1 60 42 44 146 14 160
Problem 2 47 48 49 144 4 148
Problem 3 31 34 42 107 48 155
Problem 4 37 40 39 116 17 133
Problem 5 47 44 43 134 14 148
Problem 6 40 45 40 125 13 138
Problem 7 44 45 44 133 17 150
Problem 8 32 30 33 95 40 135
Problem 9 40 41 39 120 28 148

Total 378 369 373 1,120 195 1,315

Feature extraction
Modified Roslyn API1 was used to extract the code metrics. For use of modified Roslyn API, the code must be
written in visual code by creating a .NET console app with the addition of Microsoft.CodeAnalysis, Microsoft.
CodeAnalysis.CSharp, and Microsoft.CodeAnalysis.CSharp.Syntax. The modified Roslyn code read the
contents of the C# files into a string and then parsed the C# code into a syntax tree by using its syntax
walk to analyse and extract features such as InterpolatedStringCount, StatementCount, MethodCount,
ClassCount, VariableDeclarationCount, which are significant to code analysis as regards structure, syntax
and semantics. The modified Roslyn API checked through the syntax tree to extract the code metric features,
which are embedded into the modified Roslyn code. The extracted metrics were aggregated into a data
structure for analysis, with the extracted features saved into an Excel file.

1 https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 7

Detection of GenAI-produced and student-written C# code

Eighty-three code stylometry features (Appendix A) extracted from the modified Roslyn API were used to
train and evaluate the classifiers. The metrics fell into four categories, namely lexical, syntactic, layout, and
semantic. Lexical features focus on individual tokens in the code such as keywords, identifiers, operators, and
literals, reflecting the vocabulary and basic elements used. Extracted examples included UniqueIdentifiers,
AverageIdentifierLength, and InterpolatedStringCount. Syntactic features capture the structural organisation
of the code, including arrangement of statements, control flow constructs, and the syntax tree. The syntactic
features extracted included IfStatementCount, MethodCount, NestedBlockDepth, and NamespaceCount.
Layout features differentiate code based on formatting consistency, and the features extracted included
NonWhitespaceLines, TotalLines, LineCount, and AverageLineLength. Semantic features capture the
meaning or behaviour of the code, such as data flow, control flow, or implemented logic, and extracted
features included MethodInvocationCount, CyclomaticComplexity, and ExpressionStatementCount.

CsvHelper and CsvHelper.Configuration were used to extract these code stylometry features into an Excel
file for easy training and testing on the six classifier models. The command prompt was used to run the
extraction command, with the directory set to the location of the modified Roslyn Visual Studio file. The
“dotnet restore” command was run to check and read the .csproj in the project folder, and then the needed
package from NuGet was downloaded into the solution package, and this command addressed any version
conflicts. After this, the “dotnet build” command was used to compile the source code into a code that could
be executed by .NET runtime and also checked for errors. Finally, the “dotnet run” command was used at the
command prompt template, followed by a double quotation of the folder directory housing and saving the
C# code files to extract the code stylometric. A confirmation message appeared in the command prompt,
indicating the creation of the Excel file and successful writing of the code metrics.

Creation of four datasets
The experiment used 80% of the collected data for training and 20% for testing. All training was performed
using group five-fold cross-validation with five splits: in each split, one fold was used for testing and the
other four for training. Splitting ensured that no data point from any group appeared in both the training
and testing sets. For all models, the number of estimators (n_estimators) was set manually to 100, and no
hyperparameter search was performed. This default value provides a good balance between performance
and computational cost.

Data was arranged into four sets:
•	 Set 1 comprised student-written code and a combination of Blackbox.AI, ChatGPT, and Copilot

code.
•	 Set 2 comprised student-written code and Blackbox.AI code.
•	 Set 3 comprised student-written code and ChatGPT code.
•	 Set 4 comprised student-written code and Microsoft Copilot code.

After feature extraction, the data used ensured a balance between the student-written code and the GenAI
code across each problem. The data used for the training and testing of each set included 1882, 756, 738,
and 746 code solutions for Set 1, Set 2, Set 3, and Set 4, respectively. The training data for Set 1 is outlined
in Table 6. The training data for Sets 2–4 is given in Table 7.

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 8

Detection of GenAI-produced and student-written C# code

Table 6: Data in Set 1

Problem no. No. of
student

code
solutions

No. of
Blackbox.AI

code solutions

No. of
ChatGPT

code
solutions

No. of Copilot
code solutions

Total no. of AI
code solutions

Grand total

Problem 1 108 36 36 36 108 216
Problem 2 105 35 35 35 105 210
Problem 3 107 31 34 42 107 214
Problem 4 116 37 40 39 116 232
Problem 5 104 34 35 35 104 208
Problem 6 102 34 34 34 102 204
Problem 7 104 34 35 35 104 208
Problem 8 95 32 30 33 95 190
Problem 9 100 33 33 34 100 200

Totals 941 306 312 323 941 1,882

Table 7: Data in Sets 2–4

Problem
no.

Set 2
Student-written and

Blackbox.AI code

Set 3
Student-written and

ChatGPT code

Set 4
Student-written and

Copilot code

Student
code

Blackbox.AI
code

solutions

Total Student
code

ChatGPT
code

solutions

Total Student
code

Copilot
code

solutions

Total

Problem 1 60 60 120 42 42 84 44 44 88
Problem 2 47 47 94 48 48 96 49 49 98
Problem 3 31 31 62 34 34 68 42 42 84
Problem 4 37 37 74 40 40 80 39 39 78
Problem 5 47 47 94 44 44 88 43 43 86
Problem 6 40 40 80 45 45 90 40 40 80
Problem 7 44 44 88 45 45 90 44 44 88
Problem 8 32 32 64 30 30 60 33 33 66
Problem 9 40 40 80 41 41 82 39 39 78

Totals 378 378 756 369 369 738 373 373 746

Testing of the classifier algorithms
In this study, no preprocessing or encoding was applied to the datasets prior to training the classifiers,
because the 83 code stylometry features extracted using modified Roslyn were inherently numerical and
continuous, thus representing quantitative properties of the code with no categorical variables (Appendix
B). There were no missing values in the dataset, as all 83 features were successfully extracted. A machine-
learning model (Figure 2) that sought to distinguish between GenAI C# code and student-written C# code
was constructed, using the six aforementioned classifiers: XGBoost, KNN, SVM, AdaBoost, random forest,
and soft voting (with XGBoost, KNN and SVM as inputs).

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 9

Detection of GenAI-produced and student-written C# code

Figure 2: Model pipeline

Performance metrics
The performance of each classifier was measured using five metrics: accuracy, recall, precision, F1 score,
and AUC-ROC (area under the curve-receiver operating characteristic).

Accuracy gives an overall measure of correctness and, to avoid giving misleading information, the datasets
in this study were balanced with equal amounts of GenAI code and student-written code.

Where TP represents correctly identified GenAI code; TN represents correctly predicted human-written
code; FP represents incorrectly classified GenAI code; and FN stands for incorrectly classified human-
written code.

Recall measures the actual Gen AI code that is correctly identified, and a high recall indicates that GenAI
code is rarely missed.

Precision measures the instances predicted as GenAI code that are actually GenAI. High precision indicates
the low possibility of human-written code being classified and flagged as GenAI code.

F1 score is the harmonic mean of precision and recall, which checks the balance between detecting GenAI
code and reducing the possibility of human-written code classified as GenAI code.

AUC-ROC valuates the model’s ability to differentiate between GenAI and human-written code across
different classification thresholds.

Where TPR is the true positive rate and the same as recall, and FPR is the false positive rate,

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 10

Detection of GenAI-produced and student-written C# code

4. Results and discussion
Set 1
In the test results for Set 1, which combined student-written code and code produced by all three LLMs
(Blackbox.AI, ChatGPT, and Microsoft Copilot), it was found that random forest performed best for student-
code detection with accuracy of 0.97, supported by recall of 0.97, precision of 0.88, and F1 score of 0.92 (Table
8). This strong performance indicates that random forest effectively identified nearly all the student-written
code, with minimal false negatives (i.e., student code misclassified as AI-generated). For the AI-generated
code, XGBoost performed best with accuracy of 0.93, recall of 0.89, precision of 0.96, and F1 score of 0.92.
Both random forest and XGBoost achieved an AUC-ROC of 0.98, indicating strong discrimination between
student and AI code across various thresholds.

Table 8: Classifier performance with Set 1 (student-written and AI code (from three LLMs))

Classifier Accuracy Recall Precision F1 score AUC-
ROC

Student
code

AI
code

Student
code

AI
code

Student
code

AI
code

Student
code

AI
code

XGBoost 0.93 0.93 0.89 0.89 0.96 0.96 0.92 0.92 0.98
KNN 0.78 0.70 0.78 0.70 0.75 0.76 0.75 0.70 0.81
SVM 0.79 0.75 0.79 0.75 0.81 0.83 0.77 0.75 0.92

AdaBoost 0.87 0.87 0.94 0.80 0.84 0.94 0.88 0.85 0.95
random forest 0.97 0.87 0.97 0.87 0.88 0.97 0.92 0.91 0.98

soft voting 0.90 0.90 0.87 0.94 0.93 0.87 0.90 0.90 0.97

Set 2
In the test results for Set 2, which combined student-written and Blackbox.AI-produced code, it was found
that XGBoost and random forest performed best for student-code detection with accuracy of 0.92 (Table 9).
Also, for the student code, XGBoost had recall of 0.88, precision of 0.95, and F1 score of 0.91, while random
forest had recall of 0.92, precision of 0.88, and F1 score of 0.89. XGBoost’s higher precision indicated fewer
false positives, while random forest’s higher recall suggested that it was slightly better at capturing all
student code. For the Blackbox.AI-generated code, XGBoost was the best classifier, with accuracy of 0.92,
recall of 0.88, precision of 0.95, and F1 score of 0.91. These metrics suggest that Blackbox.AI-generated
code has distinct features that XGBoost effectively leverages. Both XGBoost and random forest achieved
an AUC-ROC of 0.98, reinforcing their strong performance on this set.

Table 9: Classifier performance with Set 2 (student-written and Blackbox.AI code)

Model Accuracy Recall Precision F1 score AUC-
ROC

Student
code

AI code Student
code

AI code Student
code

AI code Student
code

AI code

XGBoost 0.92 0.92 0.88 0.88 0.95 0.95 0.91 0.91 0.98
KNN 0.79 0.70 0.79 0.74 0.75 0.81 0.76 0.76 0.85
SVM 0.71 0.89 0.71 0.89 0.88 0.77 0.78 0.82 0.92

AdaBoost 0.89 0.89 0.93 0.86 0.88 0.93 0.90 0.89 0.96
random forest 0.92 0.86 0.92 0.86 0.88 0.92 0.89 0.88 0.98

soft voting 0.90 0.90 0.86 0.94 0.93 0.87 0.89 0.90 0.97

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 11

Detection of GenAI-produced and student-written C# code

Set 3
In the test results for Set 3, which combined student-written and ChatGPT-produced code, it was found that
random forest performed best for student-code detection with accuracy of 0.97, recall of 0.97, precision of
0.82, and an F1 score of 0.88 (Table 10). For detection of ChatGPT-generated code, AdaBoost was the best
classifier with accuracy of 0.88, recall of 0.85, precision of 0.91, and F1 score of 0.87. The lower recall compared
to other sets suggests that ChatGPT code is harder to detect, potentially due to student-like characteristics.
XGBoost, AdaBoost, random forest, and soft voting all achieved an AUC-ROC of 0.97, indicating robust class
separation despite the challenges posed by ChatGPT code.

Table 10: Classifier performance with Set 3 (student-written and ChatGPT code)

Model Accuracy Recall Precision F1 score AUC-
ROC

Student
code

AI code Student
code

AI code Student
code

AI code Student
code

AI code

XGBoost 0.86 0.86 0.79 0.79 0.93 0.93 0.85 0.85 0.97
KNN 0.82 0.68 0.82 0.68 0.75 0.78 0.77 0.71 0.81
SVM 0.62 0.91 0.62 0.91 0.89 0.72 0.71 0.80 0.87

AdaBoost 0.88 0.88 0.90 0.85 0.88 0.91 0.88 0.87 0.97
random forest 0.97 0.74 0.97 0.74 0.82 0.97 0.88 0.82 0.97

soft voting 0.87 0.87 0.80 0.93 0.92 0.83 0.86 0.87 0.97

Set 4
In the test results for Set 4, which combined student-written and Microsoft Copilot-produced code, it was
found that random forest performed best for student code detection with accuracy of 0.97, recall of 0.97,
precision of 0.84, and F1 score of 0.90 (Table 11). For the Copilot-generated code, the soft voting classifier
performed best with accuracy of 0.90, recall of 0.96, precision of 0.86, and F1 score of 0.90. Random forest
achieved the highest AUC-ROC of 0.99, followed by XGBoost with 0.98 and AdaBoost and soft voting with
0.96.

Table 11: Classifier performance with Set 4 (student-written and Copilot code)

Model Accuracy Recall Precision F1 score AUC-
ROC

Student
code

AI code Student
code

AI code Student
code

AI code Student
code

AI code

XGBoost 0.89 0.89 0.80 0.80 0.97 0.97 0.88 0.88 0.98
KNN 0.86 0.70 0.86 0.70 0.77 0.82 0.80 0.72 0.82
SVM 0.72 0.86 0.72 0.86 0.88 0.78 0.75 0.80 0.91

AdaBoost 0.88 0.88 0.97 0.79 0.85 0.96 0.90 0.85 0.96
random forest 0.97 0.79 0.97 0.79 0.84 0.97 0.90 0.86 0.99

soft voting 0.90 0.90 0.84 0.96 0.95 0.86 0.89 0.90 0.96

Results across the four sets
The results across the four sets indicated that with respect to the AI-generated code, the
Blackbox.AI code was the easiest to detect, as demonstrated by the high accuracies in Set 2. ChatGPT (Set
3) and Copilot (Set 4) were more challenging, with lower detection accuracies for AI-generated code. This
suggests that Blackbox.AI produces code with stylistic or structural features that are more distinct than

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 12

Detection of GenAI-produced and student-written C# code

ChatGPT and Copilot when compared to student code. ChatGPT and Copilot apparently generate code
that more closely mimics human patterns, possibly due to their advanced language-modelling capabilities.
XGBoost dominated AI code detection in Sets 1 and 2 (accuracies of 0.93 and 0.92), while AdaBoost and
voting classifier were better suited to Sets 3 and 4 (accuracies of 0.88 and 0.90), respectively. XGBoost’s
optimisation of decision trees appears to make it more attuned to optimising patterns in AI-generated code,
as suggested by the results from Sets 1 and 2. Also notable was the fact that for detection of AI-generated
code, the use of the soft voting classifier, which integrates inputs from three classifiers, markedly improved
the recall rate.

The results also indicated that the student-written C# code was generally easier to detect than the GenAI
C# code, as most classifiers demonstrated superior or equivalent accuracy in identifying the student-written
code. This finding may reflect greater variability in student coding styles, making them easier to distinguish
from the more uniform AI-generated code. Random forest consistently excelled in student-code detection
across Sets 1, 3, and 4, and tied with XGBoost in Set 2, showing its robustness for identifying student
code. Random forest’s superior performance can be attributed to its algorithmic strength, which reduces
overfitting and enhances generalisation, making it well suited to capturing diverse patterns in student-
written code.

Feature analysis
SHAP was used to further explain the outputs of the machine-learning models, through assigning an
importance value to each feature for prediction, i.e., showing the features that were most influential in
identifying and classifying the AI-generated code and the student-written code.

For Set 1, the five most important features were InterpolatedStringCount, StatementCount, NamespaceCount,
LineCount, and TotalLines. For Set 2, the five most important features are InterpolatedStringCount,
LineCount, TotalLines, StatementCount, and ExpressionStatementCount. For Set 3, the five most important
features were InterpolatedStringCount, NamespaceCount, StatementCount, NonWhitespaceLines, and
ExpressionStatementCount. For Set 4, the five most important features were InterpolatedStringCount,
NamespaceCount, StatementCount, NonWhitespaceLines, and ExpressionStatementCount.

InterpolatedStringCount is the number of interpolated strings such as $”Hello, {name}” in the C# code.
GenAI code tends to use more of these strings for dynamic values, while human-written code tends to have
more concatenation methods. StatementCount is the number of statements in the C# code. GenAI code
uses more dense lines of code than the corresponding human-written code, showing structural differences.
NamespaceCount is the number of namespaces used in the C# code. GenAI code tends to use a limited
number of namespaces and to use an optimised relevant one, while human-written code tends to include
unnecessary and even unused namespaces, thus having more namespaces than GenAI code.

NonWhitespaceLines are the lines in the C# code that contain actual code or comment. GenAI code
tends to have more NonWhitespaceLines than human-written code. TotalLines measures the overall
length of C# code. GenAI code tends to have fewer lines of code than its human-written counterpart.
ExpressionStatementCount is the number of expression statements in the C# code, e.g., expressions such
as assignments, compound, type casting, function return, and conditional statements. GenAI code tends
to have more such statements than human-written code because GenAI code seeks to explicitly state each
operation for clarity. LineCount is the total number of lines in the C# code, and GenAI code tends to use
fewer lines than human-written code.

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 13

Detection of GenAI-produced and student-written C# code

As seen in the SHAP feature-importance graphs below for Sets 1 and 2 (Figure 3) and Sets 3 and 4 (Figure
4), the most important features across the four sets were InterpolatedStringCount and StatementCount,
which both appear in the top five features for each set.

Figure 3: SHAP feature importance for Sets 1 and 2

Figure 4: SHAP feature importance for Sets 3 and 4

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 14

Detection of GenAI-produced and student-written C# code

Comparison with other similar studies
Table 12 compares the classifier accuracy, for detection of GenAI code, that was found in this C#-based
study with accuracies detected in similar studies focused on different programming languages. As seen in
the table, the approach in this study, which leveraged a comprehensive feature set and advanced classifiers,
achieved higher accuracies than the models used in the Bukhari et al. (2023), Idialu et al. (2024), and Pan et
al. (2024) studies of GenAI code detection in the Python and C programming languages.

Table 12: Comparison of GenAI code detection accuracy

Study Programming
language

GenAI model(s)
used

Classifier(s) used Classifier accuracy

This study:
Adegbite and Kotzé

(2025)

C# Blackbox.AI
ChatGPT

Microsoft Copilot

XGBoost
KNN
SVM

AdaBoost
random forest

soft voting

0.97
0.82
0.89
0.96
0.97
0.95

(highest accuracy
among the accuracy
figures for the 4 sets)

Bukhari et al. (2023) C OpenAI code-
cushman-001, code-

davinci-001, and
code-davinci-002

XGBoost
KNN
SVM

random forest

0.92
0.73
0.85
0.90

Idialu et al. (2024) Python ChatGPT-4 XGBoost 0.89

Pan et al. (2024) Python ChatGPT GPT Zero
GPT-2 Detector

DetectGPT
GLTR

Sapling

0.49
0.50
0.48
0.50
0.60

The feature extraction in the Bukhari et al. (2023) study includes only lexical and syntactic features, while
Idialu et al. (2024) add the layout features to the two features considered by Bukhari et al. (2023). Our study
focused on a larger list of code stylometry features (comprising 83 lexical, syntactic, layout, and semantic
features) than those included by Idialu et al. (2024) and Bukhari et al. (2023), and we can conclude that this
wider range of features was integral to the higher classifier accuracy achieved in our study.

5. Conclusions
This study has demonstrated that GenAI C# code produced by Blackbox.AI, ChatGPT, and Copilot can,
to a great extent, be identified, and distinguished from student-written C# code, through use of classifier
algorithms. The random forest and XGBoost classifiers performed best, with Blackbox.AI C# code being the
easiest to detect. This study’s focus on the C# programming language helps to fill a research gap, as GenAI
code detection in C# is a relatively unexplored area in the education sector in South Africa and globally. This
study is also significant in several other respects.

Implications for educators
The study findings also have the potential to assist educational institutions and educators in developing
tools for detection of potential use of GenAI code in student assignments. Student use of AI tools for
programming and software course assignments can be expected to decrease if detection systems are in
place, which in turn will help maintain adherence to academic standards. SHAP identification of features
in student assignments can also help to reveal patterns in students’ coding behaviours, enabling targeted
interventions to improve foundational programming skills. Students can also be encouraged to critically
evaluate the strengths and limitations of GenAI code, which will improve their critical thinking skills.

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 15

Detection of GenAI-produced and student-written C# code

Implications for researchers
Through its use of a large list of code stylometry features (comprising 83 lexical, syntactic, layout, and
semantic features), this study has highlighted certain features that were particularly important to the
detection of GenAI C# code and to distinguishing between AI-generated and student-written code.
Researcher identification of more important features can increase the optimisation of GenAI detection
algorithms for programming tasks across varying coding styles and structures. Interdisciplinary studies
can follow from this research, as GenAI code detection is at an intersection of NLP, cybersecurity, software
engineering, ethics, and education. Future research could incorporate broader sets of coding problems, and
broader sources of human-written C# code. The code could be sourced from different educational levels or
institutions, as well as from professional developers, to improve the generalisability of the results.

Implications for software developers
Improved detection of GenAI code can help software developers to understand the structure, style and logic
of AI-generated code contributions to software. With improved detection and understanding of GenAI code,
developers can more easily collaborate in an environment that allows for contributions from both GenAI
tools and human developers. Developers can focus more on refining AI contributions, while preserving the
nuances of human creativity. Enhanced detection of GenAI code can also help developers to strengthen
application security and cybersecurity, particularly with respect to malicious actors who use GenAI to
produce scripts used in attacks. When GenAI code is detected early, pre-emptive measures can be put in
place to reduce vulnerabilities and safeguard systems against evolving threats.

Limitations of the study
A limitation of this study was that the human-written code dataset was collated from first-year programming
students from only one campus of one university: the University of the Free State, South Africa. Thus,
this code does not represent the diversity of human-written C# code, which limits the generalisability of
the study findings. A larger, more diverse dataset would have provided a better representation of human-
written C# code. Furthermore, the nine problems in terms of which the human-written and GenAI C# code
was prepared presented potential limitations. The problems could have imposed biases and are unlikely to
have fully captured the nuances and complexities of software development, e.g., matters of performance
optimisation, security vulnerabilities, maintainability, and real-world applicability.

Funding declaration
No funding was received for this study or for preparation of the article.

Data availability
Data will be made available upon request to the first-listed author at adewuyi.adegbite@gmail.com.

AI declaration
GenAI tools were used for data collection of GenAI C# code, with the versions stated in the article.

Competing interests declaration
The authors have no competing interests to declare.

Authors’ contributions
A.A.A.: Conceptualisation; methodology; data collection; sample analysis; data analysis; validation; data curation;
writing – initial draft; writing – revisions; student supervision; project management.
E.K.: Conceptualisation; methodology; data collection; writing – revisions; student supervision; project leadership;
project management; funding acquisition.

References
Benzebouchi, N. E., Azizi, N., Hammami, N. E., Schwab, D., Khelaifia, M. C. E., & Aldwairi, M. (2019). Authors’ writing

styles based authorship identification system using the text representation vector. In 16th International Multi-
Conference on Systems, Signals and Devices (SSD 2019) (pp. 371–376). https://doi.org/10.1109/SSD.2019.8894872

Bukhari, S., Tan, B., & De Carli, L. (2023). Distinguishing AI- and human-generated code: A case study. In SCORED 2023
– Proceedings of the 2023 Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (pp.
17–25). https://doi.org/10.1145/3605770.3625215

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 16

Detection of GenAI-produced and student-written C# code

Caliskan, A., Yamaguchi, F., Dauber, E., Harang, R., Rieck, K., Greenstadt, R., & Narayanan, A. (2018). When coding
style survives compilation: De-anonymizing programmers from executable binaries. In 25th Annual Network
and Distributed System Security Symposium (NDSS 2018). https://doi.org/10.14722/ndss.2018.23304

Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun, L. (2023). A comprehensive survey of AI-generated content (AIGC):
A history of generative AI from GAN to ChatGPT. Journal of the ACM, 37(4). http://arxiv.org/abs/2303.04226

Cheers, H., Lin, Y., & Smith, S. P. (2021). Academic source code plagiarism detection by measuring program behavioral
similarity. IEEE Access, 9, 50391–50412. https://doi.org/10.1109/ACCESS.2021.3069367

Cheers, H., Lin, Y., & Yan, W. (2023). Identifying plagiarised programming assignments with detection tool consensus.
Informatics in Education, 22(1), 1–19. https://doi.org/10.15388/infedu.2023.05

Corso, V., Mariani, L., Micucci, D., & Riganelli, O. (2024). Generating Java methods: An empirical assessment of
four AI-based code assistants. In Proceedings of the 32nd IEEE/ACM International Conference on Program
Comprehension (ICPC 2024). https://doi.org/10.1145/3643916.3644402

Czibula, G., Lupea, M., & Briciu, A. (2022). Enhancing the performance of software authorship attribution using an
ensemble of deep autoencoders. Mathematics, 10(15). https://doi.org/10.3390/math10152572

Dehaerne, E., Dey, B., Halder, S., De Gendt, S., & Meert, W. (2022). Code generation using machine learning: A
systematic review. IEEE Access, 10(July), 82434–82455. https://doi.org/10.1109/ACCESS.2022.3196347

Ding, S. H. H., Fung, B. C. M., Iqbal, F., & Cheung, W. K. (2019). Learning stylometric representations for authorship
analysis. IEEE Transactions on Cybernetics, 49(1), 107–121. https://doi.org/10.1109/TCYB.2017.2766189

Ebrahim, F., & Joy, M. (2023). Source code plagiarism detection with pre-trained model embeddings and automated
machine learning. In International Conference Recent Advances in Natural Language Processing (RANLP) (pp.
301–309). https://doi.org/10.26615/978-954-452-092-2_034

Eliwa, E., Essam, S., Ashraf, M., & Sayed, A. (2023). Automated detection approaches for source code
plagiarism in students’ submissions. Journal of Computing and Communication, 2(2), 8–18.
https://doi.org/10.21608/jocc.2023.307054

Ghosal, S. S., Chakraborty, S., Geiping, J., Huang, F., Manocha, D., & Bedi, A. S. (2023). Towards possibilities and
impossibilities of AI-generated text detection: A survey. arXiv preprint. https://doi.org/10.48550/arXiv.2310.15264

Idialu, O. J., Mathews, N. S., Maipradit, R., Atlee, J. M., & Nagappan, M. (2024). Whodunit: Classifying code as human
authored or GPT-4 generated – A case study on CodeChef problems. https://doi.org/10.1145/3643991.3644926

Kalgutkar, V., Kaur, R., Gonzalez, H., Stakhanova, N., & Matyukhina, A. (2019). Code authorship attribution: Methods
and challenges. ACM Computing Surveys, 52(1). https://doi.org/10.1145/3292577

Kazemitabaar, M., Ye, R., Wang, X., Henley, A. Z., Denny, P., Craig, M., & Grossman, T. (2024). CodeAid: Evaluating
a classroom deployment of an LLM-based programming assistant that balances student and educator
needs. In CHI ’24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/3613904.3642773

Kotsiantis, S., Verykios, V., & Tzagarakis, M. (2024). AI-assisted programming tasks using code embeddings and
transformers. Electronics, 13(4), 1–25. https://doi.org/10.3390/electronics13040767

Krasniqi, R., & Do, H. (2023). Towards semantically enhanced detection of emerging quality-related concerns in source
code. Software Quality Journal, 31(3), 865–915. https://doi.org/10.1007/s11219-023-09614-8

Kuhail A. M., Mathew, S. S., Khalil, A., Berengueres, J., Jawad, S., & Shah, H. (2024). “Will I be replaced?” Assessing
ChatGPT’s effect on software development and programmer perceptions of AI tools. Science of Computer
Programming, 235, 103111. https://doi.org/10.1016/j.scico.2024.103111

Lalitha, L. V. K., Sree, V., Lekha, R. S., & Kumar, V. N. (2021). Plagiat: A code plagiarism detection tool. EPRA International
Journal of Research and Development (IJRD), 7838, 97–101.

Li, Z., Jiang, Y., Zhang, X. J., & Xu, H. Y. (2020). The metric for automatic code generation. Procedia Computer Science,
166, 279–286. https://doi.org/10.1016/j.procs.2020.02.099

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Advances in Neural
Information Processing Systems 30 (NIPS 2017). https://arxiv.org/abs/1705.07874

Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures,
90, 46–60. https://doi.org/10.1016/j.futures.2017.03.006

Maryono, D., Yuana, R. A., & Hatta, P. (2019). The analysis of source code plagiarism in basic programming course.
Journal of Physics: Conference Series, 1193(1). https://doi.org/10.1088/1742-6596/1193/1/012027

Nghiem, K., Nguyen, A. M., & Bui, N. D. Q. (2024). Envisioning the next-generation AI coding assistants: Insights and
proposals. In 2024 First IDE Workshop (IDE ’24). https://doi.org/10.1145/3643796.3648467

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 17

Detection of GenAI-produced and student-written C# code

Odeh, A., Odeh, N., & Mohammed, A. S. (2024). A comparative review of AI techniques for automated code generation
in software development: Advancements, challenges, and future directions. TEM Journal, 13(1), 726–739.
https://doi.org/10.18421/tem131-76

Pan, W. H., Chok, M. J., Wong, J. L. S., Shin, Y. X., Poon, Y. S., Yang, Z., Chong, C. Y., Lo, D., & Lim, M. K. (2024). Assessing
AI detectors in identifying AI-generated code: Implications for education. https://arxiv.org/abs/2401.03676

Portillo-Dominguez, A. O, Ayala-Rivera, V., Murphy, E., & Murphy, J. (2017). A unified approach to automate the usage of
plagiarism detection tools in programming courses. In ICCSE 2017 – 12th International Conference on Computer
Science and Education, ICCSE, 18–23. https://doi.org/10.1109/ICCSE.2017.8085456

Raiaan, M. A. K., Mukta, M. S. H., Fatema, K., Fahad, N. M., Sakib, S., Mim, M. M. J., Ahmad, J., Ali, M. E., & Azam, S. (2024).
A review on large language models: Architectures, applications, taxonomies, open issues and challenges. IEEE
Access, 12(February), 26839–26874. https://doi.org/10.1109/ACCESS.2024.3365742

ShaukatTamboli, M., & Prasad, R. (2013). Authorship analysis and identification techniques: A review. International
Journal of Computer Applications, 77(16), 11–15. https://doi.org/10.5120/13566-1375

Song, X., Sun, H., Wang, X., & Yan, J. (2019). A survey of automatic generation of source code comments: Algorithms
and techniques. IEEE Access, 7, 111411–111428. https://doi.org/10.1109/ACCESS.2019.2931579

Srivastava, S., Rai, A., & Varshney, M. (2021). A tool to detect plagiarism in java source code. Lecture Notes in Networks
and Systems, 145, 243–253. https://doi.org/10.1007/978-981-15-7345-3_20

Tereszkowski-Kaminski, M., Pastrana, S., Blasco, J., & Suarez-Tangil, G. (2022). Towards improving code stylometry
analysis in underground forums. In Proceedings on Privacy Enhancing Technologies, 2022(1), 126–147.
https://doi.org/10.2478/popets-2022-0007

Varona, D., & Suárez, J. L. (2022). Discrimination, bias, fairness, and trustworthy AI. Applied Sciences, 12(12).
https://doi.org/10.3390/app12125826

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Illia, P. (2017). Attention is all you
need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan & R. Garnett (Eds.), Advances
in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems (pp.
5998–6008). https://doi.org/10.48550/arXiv.1706.03762

Wan, Y., He, Y., Bi, Z., Zhang, J., Zhang, H., Sui, Y., Xu, G., Jin, H., & Yu, P. S. (2023). Deep learning for code intelligence:
Survey, benchmark and toolkit. Arxiv.Org, 1(1), 771–783. https://arxiv.org/abs/2401.00288

White, J., Hays, S., Fu, Q., Spencer-Smith, J., & Schmidt, D. C. (2023). ChatGPT prompt patterns for improving code
quality, refactoring, requirements elicitation, and software design. https://doi.org/10.1007/978-3-031-55642-5_4

Zafar, S., Sarwar, M. U., Salem, S., & Malik, M. Z. (2020). Language and obfuscation oblivious source code authorship
attribution. IEEE Access, 8, 197581–197596. https://doi.org/10.1109/ACCESS.2020.3034932

Zhang, H., Cruz, L., & van Deursen, A. (2022). Code smells for machine learning applications. In Proceedings –
1st International Conference on AI Engineering – Software Engineering for AI (CAIN) 2022 (pp. 217–228).
https://doi.org/10.1145/3522664.3528620

Zheng, M., Pan, X., & Lillis, D. (2018). CodEX: Source code plagiarism detection based on abstract syntax trees. CEUR
Workshop Proceedings, 2259, 362–373.

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 18

Detection of GenAI-produced and student-written C# code

Appendix A: The 83 code stylometry features extracted using modified Roslyn
FilePath UniqueIdentifiers IfStatementCount EnumCount

UsingDirectivesCount StatementCount AnonymousMethodCount EventCount

FixedStatementCount CommentCount WhileLoopCount LCOM
UsingStatementCount MethodInvocationCount QueryExpressionCount FieldCount
SwitchStatementCount ShortestIdentifierLength AwaitExpressionCount ClassCount

VariableDeclarationCount AverageIdentifierLength DefaultSwitchLabelCount LineCount

InterpolatedStringCount AverageMethodLength LockStatementCount UsesSpaces
InitializerExpressionCount ElementAccessCount UsesTabs

TypeOfExpressionCount DefaultExpressionCount SizeOfExpressionCount StructCount
CheckedExpressionCount ThrowExpressionCount IsPatternCount TotalLines

NamespaceCount InterfaceCount ForEachLoopCount EmptyLines
DelegateCount ConstructorCount YieldBreakCount ClassCoupling

DestructorCount ReturnStatementCount YieldReturnCount MethodCount
LongestIdentifierLength ParameterCount ElseClauseCount PropertyCount

LocalVariableCount CyclomaticComplexity AfferentCoupling AttributeCount
NestedBlockDepth DepthOfInheritance EfferentCoupling LambdaCount

NonWhitespaceLines MaxMethodBlockDepth CaseSwitchLabelCount TernaryCount
WhitespaceLines MaxNestedBlockDepth DoWhileLoopCount IndexerCount
CommentLines AverageLineLength ExpressionStatementCount ForLoopCount
MinLineLength MaxLineLength ObjectCreationCount IdentifierCount

AssignmentCount BinaryExpressionCount LocalFunctionCount

Appendix B: Snapshot of dataset extracted from modified Roslyn

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 19

Detection of GenAI-produced and student-written C# code

Appendix C: The nine problems used

1. Develop a C# console application to generate an invoice for the CSI Hoodies company.
Collect customer name and full address (street, city, province, postal code).
Accept the number of hoodies ordered (whole number).
Calculate the total due, including a hardcoded 15% VAT, with a hoodie price of R230.
Display a formatted invoice using string.Format() for the address and properly formatted currency values.
Clear the console before showing the invoice.

2. Create a C# program to decide if a car should be sold based on its age and mileage.
Input the car’s model year and odometer reading (in kilometers) as integers.
Sell the car if:
Odometer exceeds 100,000 km (regardless of age).
Model year is before 2014 (older than 10 years) and after 1950 (not antique).
Do not sell if the car is an antique (1950 or earlier) or less than 10 years old (2014 or later).
Use one Console.WriteLine() per outcome with newline and tab escape characters, avoiding compound
conditions or logical operators.

3. Build a C# console application named StudentGrades to compute a student’s average mark and grade
level.
Display a title and prompt for three test marks.
Calculate the average in one statement, handling integer division.
Assign a grade based on the average:
A: 80-100
B: 70-79
C: 60-69
D: 50-59
E: Below 50
Use a single Console.WriteLine() to show the result, building a general string and appending the grade
dynamically.
Add comments to separate code sections.

4. Write a C# program to find the highest common factor (HCF) of two integers.
Accept two positive integers as input.
Use a while loop to calculate the HCF by dividing the larger number by the smaller one, updating values
with the remainder until it reaches 0; the last non-zero remainder is the HCF.
No error checking is required.

5. Develop a C# console application for a café ordering system.
Display a menu of meal items, each with an associated number.
Allow the user to select a meal by entering its number and specify the quantity.
Display order details: number of meals, price per meal, total price (formatted as currency), and a thank you
message.
Use a do-while loop to handle multiple orders; exit the program when the user enters -1.
Implement three custom static methods:
GetInt: Takes a string prompt, displays it, reads user input, and returns it as an integer.
TotalPrice: Takes quantity and unit price as parameters, returns the total cost as a decimal.
GenerateOrder: Takes a meal price, prompts for quantity using GetInt, calculates the total using TotalPrice,
and displays the order details.
Use a try-catch block to handle invalid inputs, showing an error message (using an Exception property)
and a prompt to retry.
Use a switch-case structure to set the price based on the selected meal number and call GenerateOrder.

The African Journal of Information and Communication (AJIC) Issue 35, 2025 | 20

Detection of GenAI-produced and student-written C# code

6. Create a C# console application named MultiplicationTable to generate multiplication tables.
Prompt the user to enter a whole number to specify the multiplication table.
Generate and display the table up to the 12th place (e.g., 1 × n to 12 × n) using a while loop.
Use string.Format() for aligned output, starting from 1 (not 0).
After each table, ask if the user wants to generate another (Y/N), using a do-while loop to repeat the
process.
Use a char variable for Y/N input and handle both uppercase and lowercase (e.g., with ToUpper() or
ToLower()).
Exit the program when the user enters ‘N’.
Use a try-catch block to handle invalid inputs, displaying a custom error message.

7. Develop a C# console application for a café ordering system.
Display a menu of meal items with numbers.
Allow the user to select a meal by number and specify the quantity.
Display order details: number of meals, price per meal, total price (formatted as currency), and a thank you
message.
Use a do-while loop to handle multiple orders; exit on -1.
Implement custom methods: GetInt, TotalPrice, and GenerateOrder (same as UFSCSI 051).
Handle invalid inputs with a try-catch block, showing an error message and retry prompt.
Use a switch-case to assign prices and call GenerateOrder.

8. Develop a C# console application named CompositionOfMoney to break down a monetary amount into the
smallest number of coins/notes.
Accept and validate a decimal amount using the GetDecimal method (returns a bool and the amount).
Convert the amount to cents and use the DisplayUnits method to display the breakdown into units: 1c, 5c,
50c, R1, R10, R100.
Loop for multiple conversions using the isAnotherOne method to control repetition.
Handle invalid inputs without try-catch.

9. Create a C# console application named Revision for basic mathematical operations.
Show a menu with options: Addition (+), Subtraction (-), Multiplication (*), Division (/).
Use a do-while loop to ensure valid operation selection (no if-else for selection).
Implement methods for each operation:
Addition(): Sum multiple numbers with a while loop.
Subtraction(): Subtract two numbers using compound assignment.
Multiplication(): Multiply two numbers.
Division(): Divide two numbers, handling division by zero with a red error message.
Validate numerical inputs with a custom method.

