AI-adoption attitudes in Southern Africa’s higher education sector: A pilot survey using the capability, opportunity, motivation and behaviour (COM-B) model

Authors

DOI:

https://doi.org/10.23962/ajic.i35.21607

Keywords:

artificial intelligence (AI), adoption; higher education sector, Southern Africa, capability, opportunity, motivation and behaviour (COM-B) model

Abstract

Artificial intelligence (AI) drives innovation but faces numerous potential challenges to adoption. This pilot survey applied the capability, opportunity, motivation and behaviour (COM-B) model to examine AI adoption attitudes in the Southern African higher education sector. The study sought to evaluate the extent to which the COM-B framework, rooted in behavioural science, can generate AI-adoption insights that would be complementary to insights generated by established information systems (IS) adoption models, such as the technology acceptance model (TAM) and the unified theory of acceptance and use of technology (UTAUT). Potential facilitators and barriers with respect to adoption of AI tools adoption were mapped against COM-B domains to develop a 10-point Likert-type scale survey that was piloted with 33 individuals working in the Southern African higher education sector. The findings identified key facilitators of AI as adequate technological infrastructure, readiness to address clients’ ethical concerns, and beliefs that AI tools benefit clients. The dominant barrier identified was clients’ potential ethical concerns regarding AI use in decision-making.

References

Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database: The Journal of Biological Databases and Curation, 2020, baaa010. https://doi.org/10.1093/database/baaa010

Akinwalere, S. N., & Ivanov, V. (2022). Artificial intelligence in higher education: Challenges and opportunities. Border Crossing, 12(1), 1–15. https://doi.org/10.33182/bc.v12i1.2015

Alexopoulos, C., Lachana, Z., Androutsopoulou, A., Diamantopoulou, V., Charalabidis, Y., & Loutsaris, M.A. (2019). How machine learning is changing e-government. In ICEGOV 2019: Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance (354–363). https://doi.org/10.1145/3326365.3326412

Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthcare Journal, 8(2), e188–e194. https://doi.org/10.7861/fhj.2021-0095

Bilimoria, K. Y., Liu, Y., Paruch, J. L., Zhou, L., Kmiecik, T. E., Ko, C. Y., & Cohen, M. E. (2013). Development and evaluation of the universal ACS NSQIP surgical risk calculator: A decision aid and informed consent tool for patients and surgeons. Journal of the American College of Surgeons, 217(5), 833–42.e423. https://doi.org/10.1016/j.jamcollsurg.2013.07.385

Birkhoff, D. C., van Dalen, A. S. H. M., & Schijven, M. P. (2021). A review on the current applications of artificial intelligence in the operating room. Surgical Innovation, 28(5), 611–619. https://doi.org/10.1177/1553350621996961

Binns, R. (2018). Fairness in machine learning: Lessons from political philosophy. Proceedings of Machine Learning Research, 81, 149–159. https://proceedings.mlr.press/v81/binns18a.html

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa

Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.

Cai, C. J., Winter, S., Steiner, D., Wilcox, L., & Terry, M. (2019). “Hello AI”: Uncovering the onboarding needs of medical practitioners for human-AI collaborative decision-making. In Proceedings of the ACM on Human-Computer Interaction, 3 (CSCW) (1–24). https://doi.org/10.1145/3359206

Cane, J., O’Connor, D., & Michie, S. (2012). Validation of the theoretical domains framework for use in behaviour change and implementation research. Implementation Science, 7(37), 1–17. https://doi.org/10.1186/1748-5908-7-37

Cocosila, M., & Archer, N. (2017). Practitioner pre-adoption perceptions of Electronic Medical Record systems. Behaviour & Information Technology, 36(8), 827–838. https://doi.org/10.1080/0144929X.2017.1303083

Dada, O.A & Van Belle, J.P. (2023) Factors influencing the establishment of technology innovation hubs: A structured literature review. In The 9th Annual ACIST Proceedings. https://digitalcommons.kennesaw.edu/acist/2023/presentations/4

Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

Davis, F. D., Granić, A., & Marangunić, N. (2024). The Technology Acceptance Model: 30 years of TAM. Springer International Publishing. https://doi.org/10.1007/978-3-030-45274-2

de la Fuente Tambo, D., Moreno, S. I., & Ruiz, M. A. (2024). Barriers and enablers for generative artificial intelligence in clinical psychology: A qualitative study based on the COM-B and theoretical domains framework (TDF) models. Research Square. https://doi.org/10.21203/rs.3.rs-5309244/v1

Dwivedi, Y. K., Hughes, L., Ismagilova, E., & Aarts, G. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice, and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002

Ganapathy, A., Heeks, R., & Iazzolino, G. (2024). Theorizing digital inclusion and inequalities in ICT4D: Insights and implications for future research. GDI Digital Development Working Paper No. 107. https://www.gdi.manchester.ac.uk/research/publications/di

Gesulga, J. M., Berjame, A., Moquiala, K. S., & Galido, A. (2017). Barriers to electronic health record system implementation and information systems resources: A structured review. Procedia Computer Science, 124, 544–551. https://doi.org/10.1016/j.procs.2017.12.188

Granja, C., Janssen, W., & Johansen, M. A. (2018). Factors determining the success and failure of ehealth interventions: Systematic review of the literature. Journal of Medical Internet Research, 20(5), e10235. https://doi.org/10.2196/10235

Guo, J., & Li, B. (2018). The application of medical artificial intelligence technology in rural areas of developing countries. Health Equity, 2(1), 174–181. https://doi.org/10.1089/heq.2018.0037

Habehh, H., & Gohel, S. (2021). Machine learning in healthcare. Current Genomics, 22(4), 291–300. https://doi.org/10.2174/1389202922666210705124359

Huy, L. V., Nguyen, H. T., Vo-Thanh, T., Thinh, N. H. T., & Thi Thu Dung, T. (2024). Generative AI, why, how, and outcomes: A user adoption study. AIS Transactions on Human-Computer Interaction, 16(1), 1–27. https://doi.org/10.17705/1thci.00198

Jauk, S., Kramer, D., Avian, A., Berghold, A., Leodolter, W., & Schulz, S. (2021). Technology acceptance of a machine learning algorithm predicting delirium in a clinical setting: A mixed-methods study. Journal of Medical Systems, 45(4), 48. https://doi.org/10.1007/s10916-021-01727-6

Johnson, A. E., Ghassemi, M. M., Nemati, S., Niehaus, K. E., Clifton, D. A., & Clifford, G. D. (2016). Machine learning and decision support in critical care. In Proceedings of the IEEE, 104(2), 444–466. https://doi.org/10.1109/JPROC.2015.2501978

Keyworth, C., Epton, T., Goldthorpe, J., Calam, R., & Armitage, C. J. (2020). Acceptability, reliability, and validity of a brief measure of capabilities, opportunities, and motivations (“COM‐B”). British Journal of Health Psychology, 25(3), 474–501. https://doi.org/10.1111/bjhp.12417

Korpelainen, E., & Kira, M. (2013). Systems approach for analyzing problems in IT system adoption at work. Behaviour & Information Technology, 32(3), 247–262. https://doi.org/10.1080/0144929X.2011.624638

Kruse, C. S., Kristof, C., Jones, B., Mitchell, E., & Martinez, A. (2016). Barriers to electronic health record adoption: A systematic literature review. Journal of Medical Systems, 40(12), 252. https://doi.org/10.1007/s10916-016-0628-9

Lambert-Kerzner, A., Ford, K. L., Hammermeister, K. E., Henderson, W. G., Bronsert, M. R., & Meguid, R. A. (2018). Assessment of attitudes towards future implementation of the “Surgical Risk Preoperative Assessment System” (SURPAS) tool: A pilot survey among patients, surgeons, and hospital administrators. Patient Safety in Surgery, 12, 12. https://doi.org/10.1186/s13037-018-0159-z

Leeds, I. L., Rosenblum, A. J., Wise, P. E., Watkins, A. C., Goldblatt, M. I., Haut, E. R., Efron, J. E., & Johnston, F. M. (2018). Eye of the beholder: Risk calculators and barriers to adoption in surgical trainees. Surgery, 164(5), 1117–1123. https://doi.org/10.1016/j.surg.2018.07.002

Luo, C., Yang, C., Yuan, R., Liu, Q., Li, P., & He, Y. (2024). Barriers and facilitators to technology acceptance of socially assistive robots in older adults: A qualitative study based on the capability, opportunity, and motivation behavior model (COM-B) and stakeholder perspectives. Geriatric Nursing, 58, 162–170. https://doi.org/10.1016/j.gerinurse.2024.05.025

Marsh, R. J., Brent, A. C., & De Kock, I. H. (2021). Understanding the barriers and drivers of sustainable construction adoption and implementation in South Africa: A quantitative study using the Theoretical Domains Framework and COM-B model. Journal of the South African Institution of Civil Engineering, 63(4), 11–23. https://doi.org/10.17159/2309-8775/2021/v63n4a2

Michie, S., van Stralen, M. M., & West, R. (2011). The behaviour change wheel: A new method for characterising and designing behaviour change interventions. Implementation Science, 6, 42. https://doi.org/10.1186/1748-5908-6-42

Michie, S., & West, R. (2013). Behaviour change theory and evidence: A presentation to Government. Health Psychology Review, 7(1), 1–22. https://doi.org/10.1080/17437199.2011.649445

Nelson, G. S. (2019). Bias in artificial intelligence. North Carolina Medical Journal, 80(4), 220–222. https://doi.org/10.18043/ncm.80.4.220

Obrenovic, B., Gu, X., Wang, G., Godinic, D., & Jakhongirov, I. (2024). Generative AI and human–robot interaction: Implications and future agenda for business, society, and ethics. AI & Society, 40, 677–690. https://doi.org/10.1007/s00146-024-01889-0

Opesemowo, O. A. G., & Adewuyi, H. O. (2024). A systematic review of artificial intelligence in mathematics education: The emergence of 4IR. Eurasia Journal of Mathematics, Science & Technology Education, 20(7), em2478. https://doi.org/10.29333/ejmste/14762

O’Sullivan, S., Nevejans, N., Allen, C., Blyth, A., Leonard, S., Pagallo, U., Holzinger, K., Holzinger, A., Sajid, M. I., & Ashrafian, H. (2019). Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 15(1), e1968. https://doi.org/10.1002/rcs.1968

Owoyemi, A., Owoyemi, J., Osiyemi, A., & Boyd, A. (2020). Artificial intelligence for healthcare in Africa. Frontiers in Digital Health, 2, 6. https://doi.org/10.3389/fdgth.2020.00006

Paiva, J. O. V., Andrade, R. M. C., de Oliveira, P. A. M., Duarte, P., Santos, I. S., Evangelista, A. L. P., Theophilo, R. L., de Andrade, L. O. M., & Barreto, I. C. H. C. (2020). Mobile applications for elderly healthcare: A systematic mapping. PloS one, 15(7), e0236091. https://doi.org/10.1371/journal.pone.0236091

Panch, T., Mattie, H., & Celi, L. A. (2019). The “inconvenient truth” about AI in healthcare. npj Digital Medicine, 2, 77. https://doi.org/10.1038/s41746-019-0155-4

Paranjape, K., Schinkel, M., Nannan Panday, R., Car, J., & Nanayakkara, P. (2019). Introducing artificial intelligence training in medical education. JMIR Medical Education, 5(2), e16048. https://doi.org/10.2196/16048

Peiffer-Smadja, N., Rawson, T. M., Ahmad, R., Buchard, A., Georgiou, P., Lescure, F. X., Birgand, G., & Holmes, A. H. (2020). Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clinical Microbiology and Infection, 26(5), 584–595. https://doi.org/10.1016/j.cmi.2019.09.009

Polyportis, A., & Pahos, N. (2024). Understanding students’ adoption of the ChatGPT chatbot in higher education: The role of anthropomorphism, trust, design novelty and institutional policy. Behaviour & Information Technology, 44(2), 315–336. https://doi.org/10.1080/0144929X.2024.2317364

Qayyum, A., Qadir, J., Bilal, M., & Al-Fuqaha, A. (2021). Secure and robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical Engineering, 14, 156–180. https://doi.org/10.1109/RBME.2020.3013489

Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G. Z. (2017). Deep learning for health informatics. IEEE Journal of Biomedical and Health informatics, 21(1), 4–21. https://doi.org/10.1109/JBHI.2016.2636665

Schwalbe, N., & Wahl, B. (2020). Artificial intelligence and the future of global health. Lancet, 395(10236), 1579–1586. https://doi.org/10.1016/S0140-6736(20)30226-9

Secinaro, S., Calandra, D., Secinaro, A., Muthurangu, V., & Biancone, P. (2021). The role of artificial intelligence in healthcare: A structured literature review. BMC Medical Informatics and Decision Making, 21(1), 125. https://doi.org/10.1186/s12911-021-01488-9

Siau, Keng and Wang, W. (2018). Building trust in artificial intelligence, machine learning, and robotics. Cutter Business Technology Journal, 31(2), 47-53. https://ink.library.smu.edu.sg/sis_research/9371

Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial intelligence-based intelligent products. Telematics and Informatics, 47, 101324. https://doi.org/10.1016/j.tele.2019.101324

Tan, T. F., Li, Y., Lim, J. S., Gunasekeran, D. V., Teo, Z. L., Ng, W. Y., & Ting, D. S. (2022). Metaverse and virtual health care in ophthalmology: Opportunities and challenges. Asia-Pacific Journal of Ophthalmology, 11(3), 237–246. https://doi.org/10.1097/APO.0000000000000537

Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS medicine, 15(11), e1002689. https://doi.org/10.1371/journal.pmed.1002689

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540

Wahl, B., Cossy-Gantner, A., Germann, S., & Schwalbe, N. R. (2018). Artificial intelligence (AI) and global health: How can AI contribute to health in resource-poor settings? BMJ Global Health, 3(4), e000798. https://doi.org/10.1136/bmjgh-2018-000798

West, R., & Michie, S. (2021). A brief introduction to the COM-B model of behaviour and the PRIME theory of motivation. Qeios, 3, 1-5. https://www.qeios.com/read/WW04E6.3

Wiens, J., & Shenoy, E. S. (2018). Machine learning for healthcare: On the verge of a major shift in healthcare epidemiology. Clinical Infectious Diseases, 66(1), 149–153. https://doi.org/10.1093/cid/cix731

Xiao, C., Choi, E., & Sun, J. (2018). Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review. Journal of the American Medical Informatics Association, 25(10), 1419– 1428. https://doi.org/10.1093/jamia/ocy068

Downloads

Published

01-08-2025

Issue

Section

Research Articles

How to Cite

Patterson, M.E., Breytenbach, J. and Coffman, I. (2025) “AI-adoption attitudes in Southern Africa’s higher education sector: A pilot survey using the capability, opportunity, motivation and behaviour (COM-B) model”, The African Journal of Information and Communication (AJIC), (35), pp. 1–13. doi:10.23962/ajic.i35.21607.
Views
  • Abstract 6
  • PDF 2